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ABSTRACT

In this paper,:ghe authors showed that the largest eigenvalue of the
sample covariance m;trix tends to a limit under certain conditions when
both the number of variables and the sample size tend to infinity. The
above result is proved under the mild restriction that the fourth moment

of the elements of the sample sums of squares and cross products (SP)

matrix exist.
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Keywordsg Largest eigenvalue, sample covariance matrix, large dimensional
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1. INTRODUCTION

The distribution of the largest eigenvalue of the sample covariance
matrix is useful in certain problems of inference in the area of multi-
variate analysis. For example, it is useful in testing the hypothesis
that the eigenvalues of the covariance matrix are equal to a specified
value, Geman (1980) showed that the largest eigenvalue of A = WW'/n
tends to (1 + /;)2 almost surely when lim (p/n) = y, W= (wij) and wij's
are distributed independently with mean zero and variance one. In
proving the above result, Geman assumed that E|V11|n < nOm forn=1, 2,...

and a positive constant a. Jonsson (1983) announced the above result under

the weaker condition that E(lw11|7) < » by using a "truncation" method.

" Recently, Silverstein (1984) proved the same result under the condition

6+c
that Elwll! < @ where ¢ > 0 is arbitrary. In the present paper, we

prove the above result under a much weaker condition that E,wllla < »,
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2. PRELIMINARIES

The following results are needed in the sequel:

Lemma 2.1. For any ¢ > 0, we have
klf k }{2k-2] k-2 2k (ki {22
() et < a e (3]

for all 1 < r < ¢ < k, where [;} =n!/m'(n - m)!.

I“’%ﬂ[zi}/{%ﬁ for r = 0, 1,...,2.

Then, we have for r = 0, 1, 2,...,2 - 1,

Proof, Let

I(r + 1) - Q2r + Dk - 1)
I(r) 20 - ) - 1]k - (L -1) +1] *
But
Rr + Dk -1) - [2(2 - 1) - 1][k - (L - 1) + 1]
= (2r-2+1)(2k-20+1) >0 4iff 2r> 2 -1,
So,
LA 51 oaef e >0 -1
Hence I(r) has its maximum at I(0) = I(2), and so
k
k[ k )(2x-2) ,'{k)[22)" (k-2 2k-2) k-2 2k-2) k-2
() (5 B et < (e = L)

K 2k
y [k;-l]sl <7 [zzkl 212 o 1+ /2K,
2=0 2=0

In studying strong limit properties of random matrix, the techniques
of truncation and centralization play an important role.
Lemma 2.2, (Truncation Lemma). Let r be a number belonging to the

interval L%,Z] and let {wij’

random variables with Ewu = 0 and E|w11|

i, =1, 2,...} be a collection of 1id

2/x < o, For each n, define
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wn to be p x n matrix whose (i,j)th entry is wij’ where p = p(n) 1is such
that p/n > y ¢ (0,) as n - ». Then there exists a sequence of positive
numbers § = Gn such that

(@ &§~+0as n-—- =

(b) The convergence rate of § can be slower than any preassigned rate,

@ PO_#W, 1.0 =0

]

where W is the p X n matrix whose (i,j)-th entry is wij = wij1[|w1j|<6n

and IA denotes the indicator of the set A,

|2/r

Proof. Since Elwll < o, we have for any € > 0

2 szp(lw | > eZmr) < ® ,
11" —
m=1
Because of the arbitrariness of ¢ in the above inequality, there exists a
sequence of positive numbers € = e, such that
(1) eg~* 0, wvhen m > =,

(2) The rate of convergence is slower than any preassigned rate,

3 2 2 mr
m=12 mP(|w11|.3 €m 27 < o,
m1 m
Define § = §, = 2¢y for 2 <n< 2. Itis obvious that such a sequence
of § satisfies the requirements (a) and (b). Define wn with this §. Because

% +y, 0 <y < o, we have p < 2yn when n is large enough. Thus

P # W.» 1.0.)

. © P n
cun Jre U U dogl 2 6™
k+o m=k 2m-1<n<2m i=1 j=1
® 2y2™ 2%
<1lm § B( w2 2™
Iow o=k o-1___om 151 371 J
o 292"
= 1im ) P( \J (‘"1j|-3 smzmr))

14m 2y ) 22“'p(|w“| >¢,2") = 0
kereo m=k
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which completes the proof.
Lemma 2.3. (Centralization Lemma) Under the assumptions of Lemma 2.2,

we have

D@ = A @] — 0. a.s. (2.1)

where ) (n) and A (n) are the largest eigenvalues of —l—w W' and
max max n2r nn

and —%;wnw;, respectively, and Wn is the n X n matrix whose (i,j)th entry
n

$ Yiin T ™ignc

Proof, Denote by Mn the n X n matrix whose entries are all Ealln'

i

Since
~ 2/r - %'+1
: lellnl < Elwlll[lwlllz&/;]l < E‘wlll ((5/-!;) ’
- we obtain
C ) A
" l)‘tuax(“) - xmax(n)'
b ~2r ~ 2
- <n 2 sup |a'WMal + sup |aM a{}
{ lalf= = 7 jalfa
- -zr E E 2 ~ ~ -~ 2
n 2 sup li-laillisl jzlaiwijnawlln. + nle11n|
E ai-l
i=1
. X sup ( E ai)z
2 i=]
:._::. ai-l
EJj j=1 }
9. 1 2 2 4
e _ -=+4] -=+1 n 1/2 =<S43 -—+2
- ianrnr s T ( wi) +n ¥t s T
3 1=1 4=1 13
-~ 1 2 2
-=(r-1)“=1 ==4+1 n \
. <cdn r s /n-2r § ZWi )1/2
- \' gap gmp 1
, -2t -ie
s +n § T — 0, a.s. 1f r > 1.
e
o
R S P S S " e -\-_ b ‘-‘. :\.. sl -t \.:‘;I“ oo :i




' -Z(r-l)z-l - ]
+n r 8 — 0, a.s. if r < 1. (2.2) :

e
I

In proving the above result, we have used the facts that

>}

A
n -'4
o2t wi —+ 0, a.,s, ifr>1, ]
=1 §=1 4 .
and =
-2 g 2 2 q
n 2 wij > Ewn a.s. if r <1, S
i=1 j=1

which can be seen from Marcinkiewicz strong law of large numbers.

. TR

Remark 1, Throughout this paper, we will use Lemmas 2.2 and 2.3 with

r= %. and the requirement (b) is specified as

*.

(b') 8§ log n > », when n + =, (2.3)

Remark 2. From Lemmas 2.2 and 2.3 we can easily see that
- —* 0 a.,s, as n — o,
Amax(n) Xmax(n) s
if the conditions of Theorem 1 hold, where Amax(n) is the largest eigen~

value of lW W'
nnn
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3. SOME RESULTS ON GRAPH THEORY

Given a sequence (il,jl,iz,jz,...,ik,jk), where 1 are

1""’1k
integers in the set {1,...,p}, and jl,...,jk are integers in the set
{1,...,n}, we define a directed multigraph as follows. We draw two
parallel real lines, I-line and J-line. We plot 11,...,ik on the
I-line and plot jl""’jk on the J-line. These are vertices and they
are split into two disjoint classes on the two parallel lines. So
even if the two integers ia and jb are equal, they will not be the
same vertex because ia belongs to I-line and jb belongs to J~line.
But if ia = ib (or ja = jb), we regard these two vertices identical.

—

Edges of the directed bigraph will be the directed segments iljl,

~

jliz, izjz, j213""’1kjk’ jkil. They are 2k in number and they should

be regarded different from each other, even in the case when two
edges have the same initials and ends.

Sometimes it is conveniant to denote ia by v and ja by v

2a-~1 2a°’

So the vertices of the graph are VisVoseresVors and the edges are

v Notice that when we write an edge as

12 V2V3re oo Vaka1Vake Vak'it

VoVarl® we always mean that va is the initial vertex and Vel is the

end vertex, the direction of the edge is from votov

When two edges vava+1, vbvb+1 have the same vertex sets, i.e.

{va,v } = {vb,vb+1}, we cannot conclude that VoVarl = VpUbel® since

<=> a = b, When {va,v } = {vb,vb+1}, we say that the

Valarl T VbUb4l

two edges coincide.

a+l

The graph we just constructed will be called a W-graph.

A W-graph will be called canonical, if v, i_max{va_z,va_a,...} + 1,
for each a > 2, and \ =1, v, = 1.

In the following, we will get a bound for the number of canonical

W-graphs.




In a canonical W-graph, an edge v 1Va (a > 2) will be called an

a—

a-1° a-1Va 18

1Va is called a row imnnovation, and if

a is even, a column innovation. Note that Vv, is a column innovation

innovation, if va does not occur in vl,vz,...,v Suppose v

-

an innovation. If a is odd, V.-

P W

according to the above definition.

In a W-graph, an edge v va (a > 2) is said to be single up to v

a-1
(b > a), if there is no edge V.

b

v _with 1 < ¢ < b such that v v
c - c-lc

(b > 3) will be called a T

-1

coincides with Va1Ya* An edge V-1 3—edge

if there is an innovation V.-1Va’ single up to V-1? and Vp-1"p?

v v_ coincide.
a-l'a

An edge will be called a T,-edge if it is not an innovation and

P T

A

not a T3-edge.

A consecutive segment VoVl Vb-1" of the whole W-graph will be

called a chain.

Lemma 3.1. Let v v ...v_be a chain such that
—_— a at+l c

(1) v v is single up to Vs

a+l

(2) v has been visited by ViVges eV, .

Then the chain contains at least one Ta-edge.

v v_1is an edge of T

Proof. Whenc-a = 1, evidently Vava+l = Va'c 4°

We know that vc_lvc must be a TA or a T3 since it cannot be an

R ) CRRBIRIOR

innovation. If it is a T4, the proof is completed. 1If V1Y is a T3,

then there is a single innovation V-1V coincident with Vo1V such .

that b < c. o
C

Case 1. b > a+l. Since v, = v or vc =V then either .
— - 3

b-1

v cesV or v.v ...v, has the properties (1),(2) and is shorter

A

a'a+l’"*Vb-1 a'a+l" Vb

than VoVatl® Voo By induction hypothesis VaVa+l® " Vp contains a Ta—edge,
but it is a part of the chain vava+1...vc. So the original path contains
a Ta-edge.

-------
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Case 2. b < a+l, i.e. Vi1 is in the path v

Vel = (vb or vb-l) is visited by Vv,

the properties (1),(2). By induction, the lemma is proved.

1 2...v , and then

...v . Thus vava+l"°vc-l has

Note: 1In a W-graph, the chain MACTERAA + determines

completely whether the edge VoVl is an

innovation, a T3 or a Td'

Lemma 3.2. If in the chain v,v ceeVos there are s edges, each of which’

12

is single up to Va and has a vertex equal to Va and 1f t 1is the number of

noncoincident TA edges in vlvz...v s thenms <t + 1.

Proof. Let v -lva s Vo Vo 41rrerr Y ¥ be all the single edges such

1 3 3 -] as+1

that al 32<...< as<a and v 2v 2+1,...y svas"_1 are single up to Vo and

Consider chains L, = eeea V. , L, = cee V5 eesy
2 2 2+1 a, 3 3 3+1 a,
s ™ vasvas+1 cee V. By Lemma 3.1, Lz has a Ta-edge EZ' Let vb3 be

the first vertex in L3 which belongs to L,. Then by Lemma 3.1

L

«e. v, contains an edge of T, and we denote it by E..
3 3+1 b3 4 3

Evidently, E3 and EZ are not coincident. Let Vb be the first vertex
4

of L, which also belongs to LZLJ Ly. Then val‘val‘+1 b, has an edge
by Lemma 3.1. Let it be denoted by Ed‘ Evidently no two of

o0V

of Té’

2 E3’E6 are coincident. Continue this procedure. Finally, we get
s-1 edges of Té’ which are not coincident with each other. So
s-1 <t , s <1+t .

A T3 edge v,V is called regular, if there is more than one

a+l
innovation with a vertex equal to Va and single up to v,

Lemma 3.3. In any W-graph there is amapping ¢ from regular T3
edges to Ta edges such that for any T4 edge E, there are at most two

regular T3'edges whose ¢ image 1s E.
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Proof. Define ¢ as follows.

Let Vo Va4 va AL EEREY va Vo4l be the set of all innovations
171 2 72 s s
single up to v, such that
1) v = v =,,.=V = v
a, a, a_ a
(2) v =v orv = v
a1 a 1+l a
(3) a; < a, <...<aS < a_ = a.

We note that there is at most one innovation inward to v, and if there
is such an innovation, it must be the foremost one among innovations
with a vertex va.

In this W-graph, v,V must coincide with one of VaVaarrstoVa Vv

a+l a +1°’
171 s s
Let that one be va*va*+l' Also, let
i+ 1, if a* = a, fori=1,...,s-1,
v = v(a) =
S, if a* = ag.
By Lemma 3.1, in the path (; = va$va9+l oo vav+1, there is at
least one edge of T4. Let the first one be Ea. Def ine @(vava+1) = Ea.
At first we prove that if VaVar1® VpVbsl 2TC two regular T3 edges

and v, # Vi then Ea # Eb (Ea,Eb may coincide). Suppose qa = VarVargrttVan,

C .oV Then, we have the following possibilities to

b~ Vb'Upt4r Ve

consider:

(l) a' < a" < b' < b",
(2) a'"<b'<a"<b",

(3) a' < b' < bll < a"'
For case (1), E # Eb is evident.

Consider case (2). Ca’ Cb are divided into three parts as
Q1 - va,va,+1...vb,, Q2 = vb,vb,+1...va", Q3 = Va"va"+1"'vb" as given

in the following diagram.




[5/3[5' =i’6"

It is enough to show that Ea is in Ql,Eb is in QZQJ Q3. By

* ' = =
definition, there is an innovation Vo aVprel with b* < b', Vpa=Vp =V

single up to v If b* < a', by Lemma 3.1, Q1 contains a Ta-edge. If

b.
a' < b* < b', we can consider the chain v

es sV it is part of

b*Vbr41" Vp?
Q1 and it contains a Ta-edge by Lemma 3.1. So Ea € Ql' It is

e SRR

obvious that E, is in Q, Y Q- Thus Ea # E,. i

Consider (3). As before, we can show that Ea is in VarVarerto Vp!

and Eb is in MO OREER A ;
L
-lﬂ.' = (.q'll

5

&
W,

&

Then we consider the case V. = vy and a < b, Now VaVasl? ViVbel

both are regular T3 edges and so they coincide with single innovations

I\ T WP

va,,‘va*+1 and vb*vb*+1. va*va*+1 and vb*vb*+1 cannot coincide. So

Ea # Eb except V_ V. ui10 VpaVpxsy 2T the last two single innovations.

In the last case ¢-1(Ea) has cardinal 2.

A
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At last we get that the mapping ¢: vV —_— Ea for regular

a+l
T3's has the property that ¢-1(Ea) has at most two edges of T3. The

proof of Lemma 3.3 is completed.
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4. LIMIT OF THE LARGEST EIGENVALUE

We now prove the main result of our paper.
Theorem 3.1. Let {wij: i,j = 1,2,...} be an infinite matrix of
1id random variables, Ew,. = 0 and Ewa <w, If A (n) denotes the
11 11 max

largest eigenvalue of the matrix % wnwr'l’ here Wn denotes the p x n

random matrix [w, ; 1 = 1,...,p; j = 1,...,n), then

i’
limA___(m) = (1 + 5)% Ew?, a.s
max 11 °ee
n>o
as n~ o, p+=and p/n-~+y.
Proof. Without loss of generality, we assume that sz =1, We

11
only have to prove that 1lim Amax(n) <1+ /;)2 a.s. . But, according

to Remark 2 of Section 2, it is sufficient to show that

lim I-“(n) <1+ v’y_)2 a.s. .

In other words, we as3ume in the sequel that

(1) I"ijl < 6/,
(2) Ewij =0,
2
(3) Ewij <1,
(4) Elwijll < (6/a»rt, for 1> 2,
(5) Elwijlz <c/m*?, fore > 3.
Now, choose z > (1 + /;)2 arbitrarily. We will now show that
© A (n) k
(6) 2 E .ﬂz_ < ®
n=1

where k = kn satisfies

(7 knllog n —> o

8) s1/6

knllogn—* 0.
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We have

~k k
n

ED, 1% < EerGwuH® = 0™ E erw wh

= n-k z Ew w w ces W, . W, . .

Here the summation is taken in such a way that il,...,ik run over all

integers in {1,...,p} , and jl,...,jk run over all integers in
{1,...,n}.

The above sum can be split in the following form.

E t:r(%l-wa)k= n-k Z' z'v zvn E Wi .

W w W .
1 13y 13, 4Ly 43
here

]
z ~ summation for different arrangements of four different types

of elements at the 2k different positions.

te
Z - summation for different canonical graphs T with given

arrangement of the four types for 2k positioms.

tey

z - summation of E w vee W for which the graph is

w
1,4, 1,3

isomorphic to the given canonical graph.

L3¢

Let r denote the number of row innovations, % denote the number
of T3 edges. Then there are 2 - r column innovations and Qk - Zz)Ta

k 2
. \ -
edges and so Z is bounded by z 2 {:}[zEr][Zklz]. Since every row
f=1 r=]1

innovation leads to a free i-index and every column innovation leads to

FHIORN JODDDTIOTE " TOROR

a free j-index except the first column innovation ViV, which leads to

ree -
an i-index and a j one. We know that z is bounded by pr+1 n2 T,

e
To bound | , let t denote the number of noncoincident T, edges.

ddndedak Al 3

By definition, each innovation in a canonical W-graph is uniquely

determined by the chain before it and each nonregular T, edge is so

3
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done as innovations. If t = 0, i.e. ¢ = k, then by Lemma 3.3, there

are no '1‘4 edge and regular T, edge, so that z is only one summand.

3

For t > 1, since each T, edge in a canonical W-graph must be one of the

k2 elements in the k xk matrix (wij) i <k, j £k, all the possibilities
kz] (2k-22

that 2k - 20 T, edges may take are less than [t

4
and 3.3, all the possibilities that all the regular T3 edges take is

not more than (t+1)Ak 42. Hence Z is bounded by P;] o2k 22(t+1)4k 42
6k-62

. By Lemmas 3,2

_g_th (t+1)

Finally, we bound the expectation E w cee W

w w .
1,3 14 Lde 1
2 .2

If t = 0, each expectation is (E wll) <1. For t > 1, let u denote

the number of innovations which coincide with at least one T& edge and

let ng denote the number of T, edges which coincide with the i-th such

4

innovation, 1 = 1,2,...,u, respectively,
Let mj be the number of T4 edges which coincide with. each other

but not with any innovation, j = 1,2,...,t=-1. Then we have

U ni+2 t-u "ﬁ

I (Ew ) I Ew

Wi tudk g1 11 Tgap 1
u t-u

where 2(%~p) + ) (n, +2)+ } m =2k and u < t. By (3),(4) and
g=1 1 j=1 1 -

2 . L-u
E w w cee W, oW = (E wll)

(5) we have u t-p
) (n,-1)+ ) (my-1)
v, , | < vy It i=1

w
Wi 113k

IE w w cea
44 1,4 i

- c“(é/r'{) 2k-22-t < kt(G»’E) 2k-22-t

when k is large enough.

By the above argument, we obtain
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s
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kK k2 _ . 2k=22
E tr(% wnw:) <n Kk ;S [1:] [21: ][21; z) T e ) K2E (p41) BR-62
=1 r=1 t=0

LI r 2k=2
<pl 1 [k][zk ](zf;l](g] (T 3t S (s va ity 620

r -r n £=0

b
Using the elementary inequality a-t (1:+1)b < [102 a) for a> 1, b > 0,

t > 0, we have

M2t L oo 6k-62_ ) 5%6*

b k7 (t+l) (svn)"t k|1, o/

= og —3

t=0

k
< 2 . 6k 6(k-2)
3 logn+ logéd - 3 logk
18 | 69

< 2k [——] when n is large enough.

- logn .

Using Lemma 2.1, we get for all large n

E t:r(l W wT)k
e /6, 6(k~2)
k [A r 1 -
21) (p 1867 Tk
< 2kp QZI r=z=1 (1+/5 ¥ [ Hzr)[ ) [ Togn |
1851/% 6.k
< 2kp (1+/' [(1+/ ) + [ —— ] |

logn

1/6
@) * B R (anpm P+ [ 2EES K

k
<n,
where n is a constant satisfying (l+/; )2 < n < 2z, Here the last
inequality follows from the following facts:
1/k
(a) (2kp) —— 1, because k/logn —— = and p/n — y ¢ (0,»)

(b) (1+/§)2 —3 1, because § —m 0

(c) (1+/17-n-)2 —_— (1+v/;)2, because p/n —* y ¢ (0,=)

1/6, 16
186 k} + 0, because 51/6
logn

@) [ k / logn — 0.

This leads to (6) since k/log n + « and the proof is thus complete.
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